40106 Oscillator Continued

40106 Oscillator Schematic

I left my last post (40106 Triangle Waves) on a bit of a cliff hanger. I had shown how to pull a triangle wave from the circuit and identified some issues with the oscillator as it stood. Today I’d like to go over those issues and how I corrected them to get this oscillator up and running.

I do want to mention the oscillator design above is still in a somewhat rudimentary form. I expect there will be quite a bit of optimization that can be done on it as time goes on.

Buffering

Since we are pulling our outputs directly from the loop which sets the frequency, any elements we add to the circuit which draw current will affect the frequency. This is not ideal. What we need to do is isolate the oscillator circuitry from any further additions to the circuit. For the square wave this is extremely straight forward. Since the signal is binary (digital) we can simply send the output through a second inverter on the 40106 chip. Take note: this will invert the signal (when the original oscillation was high the buffered oscillation will be low) however since this is a repeating signal it won’t cause any impact.

The triangle is slightly more difficult to buffer since we need to concern ourselves with a range of analog values. I accomplished this by feeding the signal through an LM324 op-amp set up as a voltage follower with an additional 10uF capacitor on the output.

Amplification

After the buffering stage I was still left with dramatically different amplitudes for the two wave forms. The square wave after the buffer sat at almost 9V while the triangle was only 1.4V (The output voltage of the LM324). There’s a number of ways you can approach this inconsistency however I found myself somewhat limited by the parts I had on hand and by my decision to run this oscillator on a single 9V battery supply.

How I ended up overcoming this was by using voltage dividers to lower both signals to about 1V peak to peak. From here the selected input is sent into a very basic LM386 power amplifier.

This solution does introduce a large amount of noise into the square wave signal so you may choose to bypass the amplifier with the square wave and only use it on the triangle.

Set up this way I got both signals to reliably output approximately 5Vpp.

Decoupling

One issue I ran into a lot with this circuit, especially building on breadboards was noise. The frequency would bounce around and the wave-forms would not be crisp. This can be largely overcome by adding decoupling capacitors between the negative and positive supply lines. An excellent overview of decoupling (and many other common capacitor uses) can be found over at SparkFun.

It’s Been A While

I wanted to write a post to touch base with you all and provide a bit of an update on where I’ve been, what I’ve been up to and the future of this site. I know its been a long time since I’ve provided any new content and I apologize for this. I want to be clear though that this project has not been abandoned, it has very much been on my mind and I hope to begin getting back to it moving forward.

For those of you who don’t know about 4 years ago I made the decision to return to school as an adult and begin studying engineering. I am happy to report at this time I am approaching completion of my second year in the Mechatronics Engineering program at a major Canadian University. Getting myself here though has filled most of my time and left me with limited resources to work on external projects.

That being said this site and my audio projects as a whole have been very much on my mind and I have been working towards a time when I felt I could begin producing content again. At this point the demands of my academic career and my other projects are beginning to feel more manageable and it is my hope to once again begin building this site.

I plan to begin by reworking and expanding the “Basics” area of this site to provide more detailed introductions to techniques of circuit analysis, design and the practical skills necessary to implement your designs. By focusing first on this area I hope to give you guys a strong foundation to understand electronics better and also which I can use as references for the more some more interesting projects I am hoping to undertake in the future.

DIY Drum Kit with Circuit Bent Pedal Effects

I was down in my basement playing with a few of my older projects today and took a quick video to share with you all. In this video I use my 4017 based gate sequencer to control a set of circuit bent Kawasaki drum pads. I took advantage of the stereo output on the Kawasaki drum kit to use a stereo spliter cable to separate the left and right audio channels. I sent the left audio channel directly to my PA system while I ran the right through some circuit bent Danelectro pedals I had laying around. The result Is a clean channel and a distorted/echo channel which I can mix separately on my PA system. If you are interested in learning more about any of the projects used in this video don’t hesitate to visit the following links:

4017 Gate Sequencer
Kawasaki Drum Pad With Triggers
Circuit Bent Danelectro T-Bone Distortion
Circuit Bent Danelectro BLT Slap Echo

Young Scientist – 320 Project Lab


This past week I was taking my usual trip through my local Value Village thrift store when I came upon something really rather cool that I wanted to share with you guys. Tucked at the back of a shelf in the toy section I found this Young Scientist 320 Projects Lab. I was shocked when I opened it up to find this kit not only to be in working condition but that most if not all of the components were still present in the box, including the numerous IC chips (more on them later). I decided for 6.99 Canadian how could I lose and brought the project lab home for to try it out.

I’ve only been able to find very limited information on the 320 projects kit or the Young Scientist brand itself. For this reason I can’t say exactly when it was released or the products history but based on the “Laptop PC styled” case and the windows 95-esc graphics on the lid I would assume the kit came out some time in the mid to late 90s.

I have played with a number of other electronic kits through my life and generally have mixed feelings about them. Kits like Snap Circuits or many Radio Shack’s 200 in one, 150 in 1 ect. offer a great introduction to circuits and basic components, however they always left me wanting. Once you have completed the projects designed for the kit there is nothing left to do and the box finds itself gathering dust. Though the knowledge you gain through these projects is invaluable there is no easy way to transition from them into further electronics work.

The Young Scientist 320 Project Kit seems to have a slightly different philosophy. The usual spring connectors we know from Radio Shack kits are present but they are secondary. They are organized around a breadboard placed dead in the center of the kit. This kit uses standard through hole components the same as the ones you would use in any hobby electronics project. This means you can build and solder together any project from the kit onto protoboard and also build essentially any electronic circuit within the kit. Further within the instruction manual it encourages “Young Scientists” to expand their component collections and even gives some basic instructions for salvaging parts.

Another exciting feature of this kit can be found on the breadboard and that is the power supply. The power rail of this breadboard is split into 6 sections providing easy access to a full range of common voltages (1.5, 3, 4.5, 6, 7.5 and 9).

The kit also included a number of IC chips. Again these are standard through hole components the same as you would use in any hobby project. There was no surprise in finding the hobbyist heavyweight 555 timer along with some standard op-amp and amplifier chips but I was pleased to discover the set also contained a fairly complete array of digital logic gates, counters and decoders. The inclusion of these digital components allows for some extremely complex builds towards the end of the project book including Function Generators, Logic Probes, various games and Octave Generators (just to name a few).

As an adult with hobby electronics experience I am loving this kit but I should say in closing that it is not for everyone. The decision to use standard through hole components and a breadboard makes this a far more versatile project lab than others I have worked with and allows for the construction of far more complex projects but it is a double edged knife. If you are an absolute beginner to electronics the smaller more fiddly parts can be confusing or challenging to work with and the level of difficulty in many of the projects could be discouraging. For this reason this is lab is likely better suited to someone with some knowledge of electronics, components, resistor codes ect. Still, If you have some basic knowledge or are up for the challenge, a project lab like this one can be a great way to build your skill level and play with hundreds of new and interesting circuits.

 

PSR-6 Demo Video

Hi Everyone

I just wanted to upload this quick demo video of me playing around with my PSR-6. I’m planning on reopening this project to expand on it in the next few weeks so I should have more updates soon but in the meantime this will give you an idea of the kinds of noises this thing can make.

Patch bay – Yamaha PSR-6

Happy Canada Day

Happy Canada day to my Canadian readers, I will be away over the long weekend but will resume regular updates when I return next week.