The latest toy to come across my work bench was a Little Tykes Pop Tunes Keyboard. This toy stood out to me at the thrift store for a few reasons. First and most obvious is the awesome LED ring located between the power knob and speakers. Further it had some weight to it and appeared to be solidly constructed which gave me some hope for what may be found inside. Finally the song samples made it stand out from a lot of other toy keyboards I had played with. Rather than ear shattering renditions of “Old MacDonald” or “Mary Had a Little Lamb” the pop tunes keyboard featured recognizable (if a bit outdated) popular music (“ABC” by the Jackson 5 for example).
Upon opening it up I found a fairly simple SMD circuit board with a black blob IC. There were quite a few transistors and resistors though a large quantity of them seemed to be associated with the LED functionality. Still there was plenty to play with so I set to it.
The first step (as with all my toys) was to set up a kill switch and line out for the toy. For the kill switch I simply cut the battery positive wire and placed a switch on it. As far as the line out I cut the speaker positive wire and ran it through a toggle on – on switch. The other side of the on – on switch I ran through a 1K resistor and into the tip of a 1/4 inch jack. I then placed a 10K ohm resistor between the tip and ground and ran a wire from the ground back to the ground point on the speaker. I recommend experimenting with different resistor values to get the volume level you require as it can vary from device to device and also depending on where you are sending the signal.
Next up I set up a pitch bend on my Pop Tunes Keyboard. First off a big thank you to alienmeatsack who made a great post about this toy on Electro-Music.com and led me to this bend. This pitch bend is slightly different than the ones I’ve used in the past as it makes use of three points on the board rather than replacing a single resistor. For this bend I used R1 as the pitch base and soldered it to the center pin of a potentiometer. I then connected the outer pins of the potenetiometer to R07 and R011 which shift the pitch up and down respectively. The toy will crash if you shift to far to either side so you may want to buffer the pot with resistors on the outside pins. I found around 4K to 5K worked fairly well for this but there is no substitute for experimentation.
I was blown away by the low end bass when the pitch was shifted down on this device. The quality of the rumbling drones you can produce are just incredible for a toy like this.
Alienmeatsack also talked about getting good results from a voltage starve on this device so I may try that out. And I’ve found a few glitchy areas on the board which I would like to investigate. I should be back to update you on my progress soon.
NOTE : Shortly after writing this post I was experimenting on this board trying to force a loop when one of the resistors cooked itself… There was a little puff of smoke and many tears. I will come back to this toy and see if I can replace the resistor and get it running again but it may be on it’s way to toy heaven. This problem was not caused by the pitch bend which seems to be very stable and produced excellent results but if you are exploring the board be careful as some of the resistors appear to have a very low tolerance.