LM386 Modifications – Yamaha PSS-30

circuit bending LM386 modifications
While completing my first set of mods on my Yamaha PSS-30 I noticed that the internal amplifier driving the mini keyboard was a 386D amplifier chip. This chip has an identical pin out and seemingly identical function to the popular LM386 which gave me some ideas for possible bends I could try. If I was able to apply some common modifications or adjustments which work with the LM386 in amplifier applications like the LM386 guitar amp I may be able to further expand the versatility of the instrument.

circuit bending

The first modification deals with the gain of the amplifier. If you’ve worked with LM386s in the past you may already know that the gain of the amplifier is set using pins 1 and 8 of the chip. Essentially by placing a resistor (usually 1 ohm – 10K ohm) and a capacitor (typically 10 uf) between these two pins you can set the gain. The higher the resistance of the resistor, the lower the gain. Upon inspection of the circuit I could see this is exactly how this 386D chip was set up. Pin 1 is connected through a 10 uf capacitor, which connects to a 1.1K ohm resistor (immediately to the left of the chip) And then to pin 8 of the chip. In order to replace this system with a variable gain control I removed the 1.1K resistor and replaced it with a 5K ohm potentiometer. By reducing the resistance you can get a slightly crunchier and more distorted sound, and by raising the resistance you can get a cleaner more polished sound. Note the gain level will influence the volume of the output so you will need to compensate for this either at the volume control added in Part 1 or at your mixer/amplifier.

circuit bending

While I was under the circuit board attaching the leads for the gain pot I also connected a few more wires for use with my second mod. I connected the first wire (yellow) to pin 1 (gain control pin) and two blue wires to pin 5 (output). These will be used for the second modification I had in mind. This is a slightly less used LM386 circuit modification but still one which is fairly well documented. By sending a signal from the output pin (5) through a small capacitor and resistor to the gain control pin (1) you can create a bass boost effect. To accomplish this I attached the first blue wire to a switch on my panel. I then ran it through a 0.1 uf capacitor and a 10K ohm resistor. I attached the yellow wire to the other side of the resistor completing the circuit. Now by flipping the switch you connect the bass boost circuit.

Though the bass boost is audible I am not overwhelmingly impressed with it. It is far from the thumping low end I was hoping for. This may be a limitation of the device itself but I feel like further experimentation is needed. I will be going back in to experiment with some other cap/resistor values and other circuit options to see if I can get a better effect. I will report back here if I find better results.

circuit bending

The second blue wire I connected through a resistor to an LED and tucked it behind the circuit board. Because I used a transparent panel this creates a cool back lit effect and since it is powered from the amplifier output it pulses along with whatever is being played on the keyboard.

That about raps it up for the PSS-30 for the time being. I really love the small form factor of this device and would love for it to make it’s way into my regular instrument lineup. In spite of this circuit being a bit limited as far as bend points and options, I still had a lot of fun and got to try out some interesting new things on the circuit. I’m going to keep this device in the back of my mind as I work on other projects and hopefully I can return to it down the road with some new ideas to further mangle it’s square wave outputs. That’s all for tonight but thanks for reading and happy soldering!

Tone Control and Line Out – Yamaha PSS-30

The thrift store gods smiled on me again this past week. During one of my usual trip to my local charity shop I found a Yamaha PSS-30 marked at 5 dollars. Not only was this tiny keyboard still in the box, it looked like it had barely been played since it’s manufacture back in 1987. I happily scooped it up and brought it home to investigate.

Now after looking inside this keyboard and spending some time online I found unfortunately the PSS-30 may not be the holy grail I had hoped it would be. Many of the Yamaha Keyboards of this era (along with many of the infamous Casio SA keyboards) contain two primary chips. The first is a synthesizer chip (usually an FM synthesizer) and second a CPU which monitors the inputs and digitally controls the synthesizer. This allowed some extremely interesting bending by cutting or crossing the data lines to modify the signal reaching the synthesizer chip.

PSS-30 circuit board

Unfortunately the PSS-30 in an effort to cut costs and save space is built to run on only one IC chip. This means the single YM2410 chip monitors the inputs and generates the audio signal internally leaving us unable to access the data flow. That being said I still wanted to have some fun with this very cool vintage keyboard.

I wanted to start this project as I do most of my builds, By adding a line out. It was also fairly important to me to add an analog volume pot along the line out. The reason for this was simple, This keyboard uses a basic digital volume control which is extremely loud and distorted on the maximum setting. Unfortunately whenever the device is powered off and back on the digital register for the volume setting resets and it returns to this obnoxiously loud setting. With the addition of an analog volume pot I can set the volume where I want it and leave it there without having to worry about it resetting.

To add the line out I cut the speaker lines. I wired the positive speaker line to the top pin of a 100K potentiometer and the ground to the bottom pin. From here I connected the tip tab of a 1/4 inch jack to the middle pin of the pot and the ground from the jack to the bottom pin. This functions as a simple voltage divider and allows you to adjust the amount of the signal which reaches the jack.

Yamaha Circuit Bent cutting

Since the keyboard itself is so small, In order to create room for the controls I had to remove the speaker altogether. Initially I attempted to drill holes for my components into the slatted plastic speaker cover but things quickly got messy and it became obvious that wasn’t going to work. Instead I used my trusty rotary tool to cut out a rectangle where the speaker had been and covered it with a square of plastic I cut from an old DVD case. This will be my control panel for the time being. Once I have the device working how I’d like it I will likely replace this plastic panel with acrylic or steel to give it a more professional look.

Tone COntrol

Additionally as something of an experiment I built a small two knob tone control circuit into the line out. This is a circuit I picked up from an excellent article over at Nuts and Volts (Fig 12). The circuit essentially functions as an adjustable low pass and high pass filter. Since the circuit itself is passive I did experience some attenuation but not enough to become an issue. Since this keyboard uses only square wave audio the capacity of these filters is somewhat limited. You can make some adjustment to the sound but if you limit either end too far the sound will become very flat and tin-y.

I also noticed that the PSS-30 uses an LM386 as an amplifier meaning that I can try some common LM386 amplifier mods on the circuit as well. I will be posting again shortly to let you know how they went but in the interim thanks for your time and happy soldering!